

Aryl sulphonyl amides as potent agonists of the growth hormone secretagogue (ghrelin) receptor

Jason Witherington ^{a,*}, Lee Abberley ^a, Benjamin R. Bellenie ^d, Rio Boatman ^a, Katharine Collis ^a, David K. Dean ^a, Alessandra Gaiba ^a, N. Paul King ^a, Nicola Shuker ^a, Jon G. A. Steadman ^a, Andrew K. Takle ^a, Gareth Sanger ^b, Sharon Butler ^c, Fiona McKay ^c, Alison Muir ^c, Kim Winborn ^c, Robert W. Ward ^a, Tom D. Heightman ^d

^a Department of Medicinal Chemistry & DMPK, Neurology & GI Centre of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK

^b Department of Biology, Neurology & GI Centre of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK

^c Molecular Discovery Research, Department of Screening and Compound Profiling, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK

^d Molecular Discovery Research, Department of Medicinal Chemistry, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK

ARTICLE INFO

Article history:

Received 13 November 2008

Revised 9 December 2008

Accepted 9 December 2008

Available online 14 December 2008

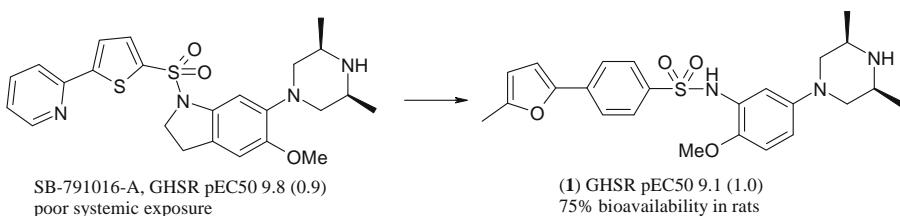
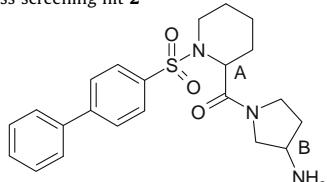
ABSTRACT

As part of an on-going lead optimisation effort, a cross screening exercise identified an aryl sulphonyl amide hit that was optimised to afford a highly potent series of ghrelin receptor agonists.

© 2009 Elsevier Ltd. All rights reserved.

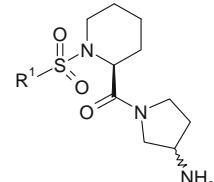
Keywords:

Ghrelin
Growth hormone secretagogue receptor (GHSR1a)
Cachexia
Post-operative ileus
Motility disorders
Neurogenic and diabetic gastroparesis
High-throughput screening (HTS) lead optimisation
Cross screening

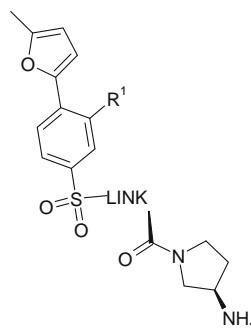


Ghrelin, a 28-amino acid gastric hormone containing a unique post translational modification on serine 3, exhibits a wide range of biological activities via its postulated cognate receptor, the growth hormone secretagogue receptor (GHSR1a). In humans as well as in rodents, ghrelin stimulates pituitary growth hormone (GH) secretion¹ and in addition increases food intake and body weight gain and regulates energy balance.^{2,3} Agents which mimic the actions of ghrelin have potential not only in growth hormone replacement therapy, but also in disorders requiring increased nutritional intake, such as cancer-induced cachexia and post-operative ileus, and in motility disorders such as neurogenic and diabetic gastroparesis.⁴ Previously we described the systematic optimisation of a high-throughput screening hit (HTS) to yield a series of small molecule orally bioavailable ghrelin receptor agonists (Scheme 1).^{5,6}

* Corresponding author. Tel.: +44 1279 627832; fax: +44 1279 627685.
E-mail address: Jason_Witherington@GSK.com (J. Witherington).

As part of our on-going lead optimisation efforts, a routine cross screening exercise of all newly prepared GSK compounds identified (2) as a hit worthy of further investigation. Herein we report the subsequent SAR optimisation and preliminary *in vivo* properties of these compounds.

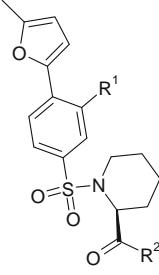

Our initial evaluation of the lead (2) focussed on understanding the stereochemical preference at both asymmetric centres. Interestingly, whilst the S-isomer of the pipecolinic acid was essential for potency (cf 3 and 4 with 5 and 6) there was no stereochemical influence of the 3-aminopyrrolidinyl amine (cf 5 and 6) (Tables 1 and 2).

Given the structural similarity to the previously disclosed aryl sulphonamide lead (1) we then sought to determine whether we could exploit the previous SAR findings from this series. As in the aryl sulphonamide series a biaryl moiety appeared essential for high inhibitory potency (cf 6 and 7) and further optimisation of this side chain afforded dramatic improvements in potency which was also consistent with our original lead series (cf 8, 9 and 11). The preferred furanyl substituent was confirmed to be an optimal


Scheme 1. Identification of potent orally bioavailable ghrelin receptor agonists.**Table 1**
Stereo isomers of cross screening hit **2**

Compound	A (R/S)	B (R/S)	GHSR pEC50 (IA) ⁷
2	Racemic		7.5 (0.8)
3	<i>R</i>	<i>S</i>	<5.3
4	<i>R</i>	<i>R</i>	<5.3
5	<i>S</i>	<i>S</i>	8.1 (1.1)
6	<i>S</i>	<i>R</i>	7.8 (1.1)

substituent in both the *R* and *S* amino pyrrolidinyl amine series (**11** and **12**) but could also be replaced by a suitably functionalised aryl moiety (e.g., **17** and **18**). Consistent with the aryl sulphonamide


Table 2
Side chain SAR

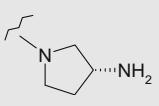
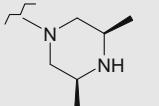
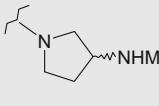
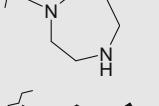
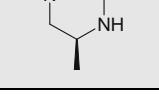





Compound	R/S	R ¹	GHSR pEC50 (IA) ⁷
7	<i>R</i>	4-Br-Ph	6.4 (0.7)
8	<i>R</i>	(2-Furanyl)-4-Ph	7.5 (1.2)
9	<i>R</i>	(5-Me-2-furanyl)-4-Ph	9.6 (1.3)
10	<i>R</i>	(2-Furanyl)-4-(3-F-Ph)	8.5 (0.9)
11	<i>R</i>	(5-Me-2-furanyl)-4-(3-F-Ph)	10.3 (1.3)
12	<i>S</i>	(5-Me-2-furanyl)-4-(3-F-Ph)	9.8 (1.3)
13	<i>S</i>	PhCONH-4-Ph	7.7 (1.1)
14	<i>S</i>	(2-F-Ph)CONH-4-Ph	8.4 (1.3)
15	<i>S</i>	(3-MeO-Ph)CONH-4-Ph	8.7 (1.3)
16	<i>S</i>	(3-Pyridyl)-4-Ph	6.5 (0.6)
17	<i>R</i>	(2,5-diF-Ph)-4-Ph	9.0 (1.2)
18	<i>R</i>	(2,5-diCl-Ph)-4-Ph	9.5 (1.2)

Table 3
Template SAR

Compound	LINK	R ¹	clogP	GHSR pEC50 (IA) ⁷	Compound	LINK	R ¹	cLogP	GHSR pEC50 (IA) ⁷
19		F	3.4	9.4 (1.2)	22		F	1.8	9.3 (1.1)
20		F	2.4	7.8 (1.1)	23		F	1.8	8.3 (1.2)
21		H	2.6	8.9 (1.1)	24		F	2.0	9.7 (1.2)

Table 4
Amine SAR

Compound	R ¹	R ²	GHSR pEC50 (IA) ⁷
11	F		10.3 (1.3)
25	H		8.2 (1.2)
26	H		8.0 (0.9)
27	H		8.1 (0.9)
28	F		8.6 (1.2)

series, introduction of polarity led to a reduction in potency (cf **5** and **16**) however the finding that a linker group was tolerated between the two aryl rings was a surprising result (e.g., **14** and **15**) given this was poorly tolerated in our initial lead series (data not published).

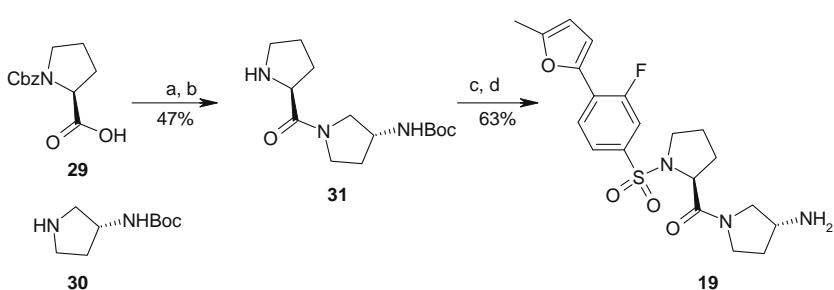
Having established the stereochemical preferences and side chain SAR we turned our attention to establishing the role of the central template in order to ascertain whether this part of the molecule could be utilised to modulate the overall lipophilicity of the series which had previously been difficult to achieve with our early lead series (SB-791016-A and **1** clogP 4.1 and 4.9, respectively). Gratifyingly, whilst the six-membered pipecolinic acid moiety was confirmed as the optimal ring size (cf **11** with **19** and **20**) (Table 3), a wide range of groups were tolerated which potentially allows for the fine tuning of the physicochemical properties of these molecules and the identification of compounds with substantially lower clogP_s than our initial lead series (e.g., **19–20** cf **SB-791016** and **1**).

Having established the preliminary preferences of both the side chain and the central core we sought to examine the structural requirements of the amine group. Previous SAR exploration in the arylsulphonamide series had demonstrated that this part of the molecule was highly sensitive to modification. Interestingly, we again confirmed the *cis*-2,6-dimethylpiperazine moiety as having good potency albeit this was not the optimal amine substituent (cf **28** and **11**) (Table 4). In general this series was more tolerant to changes in the amine functionality than in the aryl sulphonamide series.⁵

Given the initial promising SAR findings of this cross screening hit we decided to profile one of our more potent compounds. Whilst compound **19**, displayed an encouraging profile following iv dosing with low to moderate in vivo clearance the systemic exposure was low following oral dosing and would need to be optimised prior to further in vivo evaluation (Table 5).

The pyrrolidinyl analogue **19** was obtained starting with the coupling of the commercially available Cbz protected L-proline **29** and Boc protected (3R)-pyrrolidinyl amine **30** to afford, after hydrogenolysis, the amine **31**. Sulphonylation of the secondary amine followed by Boc deprotection afforded the desired analogue **19** in good overall yield (Scheme 2).

In summary, having identified a hit from a cross screening exercise, we have explored the initial structural requirements for optimal potency. In common with our previously published aryl sulphonamide series, and literature the SAR around the natural ligand ghrelin, an appropriately placed lipophilic side chain is essential for optimal potency. Furthermore, replacement of the pipecolinic acid core and aminopyrrolidinyl side chain is well tolerated giving encouragement for further optimisation of the pharmacokinetic properties of this series.


Table 5
Rat pharmacokinetic profile for compound **19** in male Sprague–Dawley rats

i.v. Bolus at 1 mg/kg	3 mg/kg po (n = 3, ±SD)
CL _b (mL/min/kg)	25
V _{ss} (L/kg)	3.5
C _{max} (μM)	0.762
t _{1/2} (h)	2.4
MRT (h)	2.4

C_{max} (μM) = 0.151 ± 0.024
T_{max} ((h)) = 4.0 (4.0–4.1)
AUC (0–t)/dose** (min kg/L) = 5 ± 1

* T_{max} expressed as median and range.

** t for AUC (0 → t) is 6 h or the time of the last quantifiable blood concentration.

Scheme 2. Reagents and conditions: (a) HOAt, EDC, DCM, 25 °C; (b) H₂, Pd/C, EtOH, 25 °C; (c) (5-Me-2-furanyl)-4-(2-F-Ph)-SO₂Cl, pyridine, DCM, 25 °C; (d) HCl-dioxane (63%, two steps).

References and notes

- Takaya, K.; Ariyasu, H.; Kanamoto, N.; Iwakura, H.; Yoshimoto, A.; Harada, M.; Mori, K.; Komatsu, Y.; Usui, T.; Shimatsu, A.; Ogawa, Y.; Hosoda, K.; Akamizu, T.; Kojima, M.; Kangawa, K.; Nakao, K. *J. Clin. Endocrinol. Metab.* **2000**, *85*, 4908.
- Tschop, M.; Smiley, D. L.; Heiman, M. L. *Nature* **2000**, *407*, 908.
- Nakazato, M.; Murakami, N.; Date, Y.; Kojima, M.; Matsuo, H.; Kangawa, K.; Matsukura, S. *Nature* **2001**, *409*, 194.
- (a) Binn, M.; Albert, C.; Gougeon, A.; Maerki, H.; Coulie, B.; Lemoyne, M.; Rabasa Lloret, R.; Tomasetto, C.; Poitras, P. *Peptides* **2006**, *27*, 1603; (b) Murray, C. D. R.; Martin, N. M.; Patterson, M.; Taylor, S. A.; Ghatei, M. A.; Kamm, M. A.; Johnston, C.; Bloom, S. R.; Emmanuel, A. V. *Gut* **2005**, *54*, 1693.
- Heightman, T. D.; Scott, J. S.; Longley, M.; Dean, D. K.; Elliott, R.; Hutley, G.; Witherington, J.; Abberley; Passingham, B.; Berlanga, M.; Frailes, M.; Wise, A.; Powney, B.; Muir, A.; McKay, F.; Butler, S.; Winborn, K.; Gardner, C.; Darton, J.; Sanger, G.; Campbell, C. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 6584.
- Witherington, J.; Abberley, L.; Briggs, M. A.; Collis, K.; Dean, D. K.; Gaiba, A.; King, N. P.; Kraus, H.; Shuker, N.; Steadman, J. G. A.; Takle, A. K.; Sanger, G.; Wadsworth, G.; Butler, S.; McKay, F.; Muir, A.; Winborn, K.; Heightman, T. D. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 2203.
- GHSR Agonist BACMAM FLIPR assay was used to determine the potency and efficacy of the test compounds. Media is aspirated from cell plates using a cell washer (leaving 10 μ l of media). Cells are immediately loaded with loading buffer (Tyrodes (Elga water + 145 mM NaCl + 5 mM KCl + 20 mM HEPES + 10 mM glucose + 1 mM MgCl₂) + 1.5 mM CaCl₂ + 0.714 mg/ml Probenicid (predissolved in 1 M NaOH) + 0.5 mM brilliant blue + 2.5 μ M Fluo 4 dye, and incubated at 37.5 °C for 1 h. Ten microliters from compound plates is then added immediately to cell plates using a FLIPR 3 calcium imaging instrument. Fluorescence measurements are then taken. Intrinsic activity (IA) expressed relative to human ghrelin.